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Abstract

Background: IDeAl (Integrated designs and analysis of small population clinical trials) is an EU funded project
developing new statistical design and analysis methodologies for clinical trials in small population groups. Here we
provide an overview of IDeAl findings and give recommendations to applied researchers.

Method: The description of the findings is broken down by the nine scientific IDeAl work packages and
summarizes results from the project’s more than 60 publications to date in peer reviewed journals. In addition, we
applied text mining to evaluate the publications and the IDeAl work packages’ output in relation to the design and
analysis terms derived from in the IRDiRC task force report on small population clinical trials.

Results: The results are summarized, describing the developments from an applied viewpoint. The main result
presented here are 33 practical recommendations drawn from the work, giving researchers a comprehensive
guidance to the improved methodology. In particular, the findings will help design and analyse efficient clinical
trials in rare diseases with limited number of patients available. We developed a network representation relating the
hot topics developed by the IRDiRC task force on small population clinical trials to IDeAl’s work as well as relating
important methodologies by IDeAl’s definition necessary to consider in design and analysis of small-population
clinical trials. These network representation establish a new perspective on design and analysis of small-population
clinical trials.

Conclusion: IDeAl has provided a huge number of options to refine the statistical methodology for small-
population clinical trials from various perspectives. A total of 33 recommendations developed and related to the
work packages help the researcher to design small population clinical trial. The route to improvements is displayed
in IDeAl-network representing important statistical methodological skills necessary to design and analysis of small-
population clinical trials. The methods are ready for use.
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Background
IDeAl is an EU funded project aiming to refine the stat-
istical methodology in small-population group trials by
strictly following the concept of an improved integration
of design, conduct and analysis of clinical trials from
various perspectives. The CHMP guidance [1] on small-
population clinical trials being published almost 10 years
ago, as well as the closely related recent draft guidance
on extrapolation set up the scene for IDeAl’s develop-
ments over the past 3 years. In particular, the CHMP
guidance stated that there exist no specific statistical
methods for small population clinical trials. This is in
stark contrast to the ambition of the international rare
diseases research consortium [2] to foster diagnosis and
therapies in rare diseases, which of course is the most
prominent application area of small-population clinical
trials. The statistical methodological challenges to design
and analyse of such trials were recently described [3].
IDeAl addressed the challenges within its nine scientific
work-packages: adaptive design, biomarkers, decision
theory, extrapolation, genetic factors, optimal design,
pharmacogenetics, randomisation and simulation. Al-
though the work-packages at a first glance appear to ad-
dress disparate methodological issues, the overarching
topics are obvious. For example, adaptive “designing” or
thinking can obviously be applied in finding an efficient
design for a clinical trial where the methodology might
also be used to combine several trials given that it may
be useful in using external information, as well as in de-
termining the type of evidence looked for. Similarly in
randomisation, a technique which is useful in designing
a trial in particular as an N-of-1 trial but its implications
for the level of evidence derived from a clinical trial has
to be considered carefully. Further non-linear mixed ef-
fects modelling is not only a useful and well established
technique in the pharmacometrical context but also to
establish surrogate endpoints. IDeAl has described the
findings in currently more than 60 peer-reviewed papers
but an applied researcher might be lost in navigating
through the results. Furthermore, an applied researcher
having a rough idea about possible important aspects to
be considered in small-population clinical trials may
wonder about options to improve standard design tech-
niques. Thus, the objective of this paper, is to build up
an umbrella of IDeAl’s research findings and to give
recommendations for design and analysis of small
population clinical trials and identify researchers’ “ideas”
expressed in topics covered by the IDeAl programme.

Paper outline
The present paper is structured according to the nine
IDeAl scientific work-packages embedded in the direc-
tions for new developments [2]. Each section ends up
with a set of recommendations. The final section give an

IDeAl view, where necessary methodological skills to
apply IDeAl’s methods are visualized by the network
“IDeAl-net”.

Level of evidence - decision theory
The question whether a drug is providing benefit to the
patients appears in the very early beginning as well at
the end of the drug development program.
The final decision to apply a new treatment or drug

depends on the level of evidence derived from a set of
trials. Above, various methods are discussed to improve
the level of evidence of a single trial, whereas the
evidence from several trials is usually synthesized by
meta-analytic approaches. When focusing on the evi-
dence gathered from sequential analysis of inferences,
we showed that the stopping rule does not have an influ-
ence on the inferences from a meta-analysis provided
that the trials are weighted by information provided [4].
Thus inferences from combining small trials in rare dis-
eases are unaffected by whether the trials were sequen-
tial or not.
In the field of development of drugs for small popula-

tions, we can do more than improving the statistical
methodology for one or a series of trials. In addition to
optimized trial designs, we should also consider the de-
cisions that determine whether a new treatment will be
coming to the market. As already observed in the
pediatric area [5], it could be disappointing to wait on
new drug licensing in disease areas with limited popula-
tions, in particular under non increasing R&D invest-
ment of the pharmaceutical industry [6]. Different
stakeholders have to come to positive decisions and their
varying opinions should be recognized. This may help to
balance the arguments and prepare the ground for new
development programs. We follow a decision theoretic
way to evaluate the interactions of different decision
making stakeholders, and to provide recommendations
for regulators, reimbursers and trial sponsors. Commer-
cial drug development is heavily dependent on EU regu-
lations, EMA decisions and national reimbursement
decisions. IDeAl has demonstrated that if pharmaceut-
ical companies experience non-transparency in such so-
cietal decision rules, such as uncertainty of how benefit/
risk and cost/effectiveness are weighted, the industry will
not be able to design the best possible trial programs [7].
Given a successful trial, it also models the sponsor’s pri-
cing and the reimburser’s reaction to that. Considering a
population of candidate drugs, we lay out the public in-
centivizing structure, in terms of requirements on clin-
ical evidence, and study the relation to sponsor’s
willingness to invest [8]. When a potentially predictive
biomarker is present, a model was proposed for how the
design of the trial will affect expected public benefit as
well as commercial value [9, 10]. Further aspects of
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adaptations are considered as well. Dosing and sizing is
modelled, and a decision-theoretic framework for
program optimization is sketched [11]. A pure societal
perspective is set up [7], where the goal function is sim-
ply to maximize the total health benefit in a limited
population. In addition the impact of non-transparency
in the regulators’ benefit-risk evaluation on optimal deci-
sions taken by the commercial sponsor was modeled.
Regarding regulatory rules, as well as regarding reim-
bursement rules [7], failure to communicate precise
rules to other stakeholders, may lead to suboptimal
design and development decisions by sponsors. One
recommendation is to increase transparency in regula-
tory and payer decisions.
A general recommendation is to formulate decision

rules in a formal Bayesian decision theoretic framework.
Even sub-optimal decisions can be modelled [7], expli-
citly assessing the uncertainty from one stakeholder’s
point of view of how another stakeholder will make de-
cisions in different scenarios.
The methodology used in the work package is based

on decision theory. It has a distinct flavor of social sci-
ence, when addressing policy issues, when discussing the
formulation of utilities, and in assumptions about (so
called) rational agents. This methodology has also some
relevance to the important ethical issues around experi-
mentation in human beings. We find that what is best
for a patient, who may be included in a clinical trial,
may be quite different from what gives the highest over-
all societal utility. We argue that the well-being of the
individual patient must have priority [9].
Finally, we consider investment decisions. It is perhaps

not surprising that we find that rational sponsors prefer
to invest in drugs with larger market potential, and that
sample sizes also tend to increase. We find that this be-
havior is partly optimal also from a public health per-
spective. However, there is often a discrepancy between
sponsor and societal optimality. In our model [8], larger
sample sizes are generally favored from a public health
view. Designs motivated by public health consideration
will more often focus on the biomarker positive subpopu-
lation. By applying mechanism design, explicitly consider-
ing how regulations will affect sponsor decisions, societal
rules can be optimized. In the framework [7, 8], the sam-
ple size decreases with lower prevalence of the disease.
Also, the regulatory requirements should be tailored to
the population size. It is recommended that societal deci-
sion rules should be determined based on an understand-
ing, and explicit modelling, of how they will inter-depend
with commercial drug developing decisions.
Our research has shown how the expected net present

value can be maximized, by tuning design parameters as
sample size and trial prevalence. The pricing of a new
pharmaceutical has also been optimized [7].

To summarize, we evaluated how to optimize the over-
all value of drug development to patients, to regulators
and to society under opacity in regulatory and payer
rules as well as in very rare diseases.

Recommendation 1. Formulate decision rules in a
formal Bayesian decision-theoretic framework [7].

Recommendation 2. Societal decision rules (regulation,
reimbursement) should be determined based on
explicit modelling of how they will inter-depend
with commercial drug developing decisions [7].

Recommendation 3. Increase transparency in
regulatory and payer decisions [8].

Recommendation 4. The well-being of the individual
trial patient must have priority [9].

Pharmacological consideration - simulation
Recently pharmacometrical modelling via application of
nonlinear mixed-effects models (NLMEM) [12] attracted
recognition as a useful methodology to aid design, sam-
ple size determination, endpoint selection, and analysis
of clinical trials. Analysis of clinical trial data using
NLMEM can provide important advantages both with
respect to the type of information gained and the statis-
tical power for making inference [12, 13]. In general, the
main disadvantage with a non-linear mixed effects mod-
elling approach is the assumptions needed for the
models. However, with the movement towards mechan-
istic models based on biological understanding [14, 15],
the validity of model assumptions becomes easier to
evaluate. Mechanism-based NLMEMs can be of special
interest in small population groups for multiple reasons
[16], like gain in statistical power using as much
biological knowledge as possible.
For more complex, longitudinal models the joint

distribution of the observations is less obvious and even
the effect size might not be easily derivable. In this
situation, usually no analytic derivation of the power can
be obtained and one has to resort to Monte-Carlo
simulations. Ideally, a Monte-Carlo study utilizes a
model containing all available knowledge for a particular
compound to simulate replicates of the trial and the
intended analysis model (not necessarily equivalent to
the simulation model) to analyse these replicates. A
novel parametric power estimation algorithm utilizing
the theoretical distribution of the alternative hypothesis
was developed in this work and compared to classical
Monte-Carlo studies. The parametric power estimation
algorithm estimates the unknown non-centrality param-
eter in the theoretical distribution from a limited num-
ber of Monte-Carlo simulation and estimations. From
the estimated parameter a complete power versus
sample size curve can be obtained analytically without
additional simulations, drastically reducing runtimes for

Hilgers et al. Orphanet Journal of Rare Diseases  (2018) 13:77 Page 3 of 17



this computation [17]. Further, type-I-error control in
hypothesis testing with NLMEMs, can be implemented
via permutation test [13, 18–21]. We established proof-
of-principle examples how highly mechanistic systems
pharmacology and/or systems biology models can be
utilized in planning the analysis of clinical trials in small
population groups. Based on simulations with the
mechanism-based models more parsimonious models
suitable for estimation can be utilized to understand
drug effects and link to the mechanism-based model.
Model uncertainty is, for natural reasons, largest when

based on estimation in a small sample size and at the
same time a small sample size represents an extra chal-
lenge in accurately characterizing that uncertainty.
To assess parameter uncertainty distributions, sam-

pling importance resampling constitutes a powerful al-
ternative to estimate and utilize parameter uncertainty,
especially in the context of small populations [22]. To
this end, we developed diagnostics metrics to judge sam-
pling importance resampling convergence.
Confidence intervals determined by bootstrap and sto-

chastic simulation and re-estimation were compared.
The bootstrap delta objective function value distribution
provides an easy way to assess if bootstrap results in
parameters contradicted by the original data [23]. Simu-
lated and real data indicated that the bootstrap is often a
sub-optimal method for imprecision estimates when the
number of subjects is small, i.e. below around 100
subjects for standard pharmacokinetic data sets.
An automated preconditioning routine for NLMEMs

to increase the computational stability of the variance-
covariance matrix was developed. It demonstrated that
the variance-covariance matrix and the R-matrix can
give a strong indication on the non-estimability of the
model parameters if computed correctly, while other
methods may not be able to do so [24].
Model averaging methods were investigated in the case

of dose selection studies (phase IIb). The proposed
method reduces the analysis bias originating from the
model selection bias of single model structure based
analysis [25].
Model based adaptive optimal designs were investigated

for bridging studies from adults to children, and were able
to reduce model parameter uncertainty [26, 27].
In summary, we developed new methods for sample

size calculation, type I error control, model averaging
and parameter precision in small populations group tri-
als within non-linear mixed effects modelling.

Recommendation 5. If fast computations of power
curves are needed from a non-linear mixed effects
model, we recommend using the parametric power
estimation algorithm as implemented in the
stochastic simulation and estimation tool of PsN

(potentially with a type-I correction based on the
“randtest” tool in PsN) [17, 20, 21].

Recommendation 6.The simulation methods
described above can be utilized to investigate the
effects of using different, smaller, more
parsimonious models to evaluate data from
complicated biological systems prior to running a
clinical study [28, 29].

Recommendation 7. We recommend the use of
Sampling Importance Resampling to characterize
the uncertainty of non-linear mixed effects model
parameter estimates in small sample size studies.
Non-estimability of parameters may be assessed
using preconditioning. The use of the bootstrap
model averaging method [24] is recommended
when conducting model-based decision-making
after a trial. Robust model-based adaptive optimal
designs may be used to improve model certainty in
clinical trials [22–24, 27].

Pharmacological consideration - optimal design
Optimal design techniques can be used to reduce the
sample size by increasing the precision of the estimates
in clinical trials providing longitudinal data. In the fol-
lowing we use optimal design methodology combined
with adaptive design features to decrease the reliance on
a priori assumptions. Particularly in rare diseases,
repeated measures for each patient are most often
available, at least to a certain extent. For instance, in
model-based drug development, nonlinear mixed effects
models are used to analyse the longitudinal data. There-
fore, finding good designs for these studies is important
to obtain precise results and/or good power especially
when there are limitations on the sample size and on the
number of samples/visits per patient. To answer the
question of good or optimal designs in non-linear mixed
effects modeling the variance of the model parameter
estimates has to be optimized by means of the Fisher In-
formation Matrix. This is particularly challenging when
the study endpoint is discrete, of a repeated time-to-
event nature, and with joint models. Here we developed
two new methods to evaluate the Fisher Information
Matrix. Both approaches first use Monte Carlo (MC) in-
tegration and then either Adaptive Gaussian Quadrature
(MC-AGQ) [30] or Hamiltonian Monte Carlo (MC-
HMC) [31]). Both approaches were evaluated and com-
pared on four different examples with continuous, bin-
ary, count or time-to-event repeated data.
We showed the adequacy of both approaches in the

prediction of the standard errors using clinical trial
simulation. The MC-AGQ approach is less computa-
tional demanding for models with few random effects,
whereas MC-HMC computational effort increases only
linearly with the number of random effects, hence is
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more suitable for larger models. For both approaches we
showed the importance of having large sampling number
at the MC step. For the MC-AGQ method we illustrated
for a binary outcome the influence of the design, i.e. the
number of patients as well as the number of repetitions
on the power to detect a treatment effect [30].
One limitation of the optimal design approach for

NLMEs is the a priori knowledge needed about the
parameter values. Adaptive design is a viable alternative,
increasingly developed for randomized clinical trial or
dose-ranging studies, but rarely applied in the context of
NLMEMs. Two-stage designs are more practical to
implement in clinical settings than fully adaptive designs,
especially for small population groups.
We showed the good properties of adaptive two-stage

designs when the initial guess about the parameters is
wrong [32]. In the studied example, the efficiency of the
balanced two-stage design was almost as good as a one-
stage design that we would have obtained if the true pa-
rameters were known. With this small number of pa-
tients (N = 50), the best two-stage design was the
balanced design with equal number of patients in each
cohort. These results are consistent with those previ-
ously obtained [33] for a simpler example.
It is important to notice that model-based analysis of

pivotal clinical trials in drug evaluation for small popula-
tion groups allows for the use of all individual informa-
tion recorded, and therefore for the decrease of sample
sizes. One main limitation, as seen by health authorities,
is the control of the type I error when performing model
selection. Model averaging approaches offer a good al-
ternative. The idea of pre-specifying a number of candi-
date models is already applied in drug development, for
instance for dose-response studies in the MCPMod ap-
proach, but was extended only recently for mixed-effects
models. Before the analysis step, one needs to design
studies that are adequate across a set of candidate
NLMEMs.
We proposed to use compound D-optimality criterion

for designing studies that are robust across a set of pre-
specified model. We also proposed robustness on the
parameter values by defining prior distribution on each
parameter and using the expected Fisher Information
Matrix resulting in an MC-HMC method [34]. We eval-
uated those new developments on the count longitudinal
data example where there is a model of the effect of dose
on the Poisson parameter [30, 31, 34].
In summary, we developed design evaluation methods

enabling small clinical trials to be analysed through mod-
elling of continuous or discrete longitudinal outcomes.

Recommendation 8. For evaluation of designs of
studies with longitudinal discrete or time-to-event
data, evaluation of the Fisher Information matrix

should be done without linearization. Using the
new approach MC-HMC (in the R package MIX-
FIM) will provide adequate prediction of standard
errors and allow to compare several designs [30, 31].

Recommendation 9. When there is little information
on the value of the parameters at the design stage,
adaptive designs can be used. Two-stage balanced
designs are a good compromise. The new version of
in the R functions PFIM can be used for adaptive
design with continuous longitudinal data [33].

Recommendation 10. When there is uncertainty in the
model regarding the parameters, a robust approach
across candidate models should be used to design
studies with longitudinal data [34].

Pharmacological consideration - genetic factors
Another way to follow the advice of the CHMP guidance
to use as much information as possible is to stratify pa-
tients according to assumed differential response to
treatments. Stratification is of rapidly increasing interest
in clinical research, in particular in personalized medi-
cine [35] as well as in rare disease, since these diseases
often have a stronger and simpler genetic causality.
Modern drug development often aims at personalizing
treatments; biomarkers are used to define subpopula-
tions for which different treatments may be optimal.
Nowadays, these biomarkers can be identified based on
the high-dimensional “omics” (genomics, proteomics,
metabolomics) data. However, to be effective for predict-
ing the patients’ response to the treatment in small-
population group trials this data needs to be prepro-
cessed. The main purpose of this preprocessing is the re-
duction of dimensionality, so the number of parameters
fitted when building the predictive model is smaller than
the sample size. IDeAl proposed methods for reduction
of dimensionality both for the whole genome genotype
data as well as for highly correlated transcriptomics or
metabolomics data. Specifically, the “group SLOPE”
approach [36–38] for identification of important bio-
markers based on the genotype data has been proved to
be effective for identifying rare recessive genetic variants,
which are particularly important in the context of rare
diseases. On the other hand, the modified version of the
Bayesian Information Criterion proposed in [39] allows
to combine the genotype and ancestry data for an effi-
cient identification of biomarkers in admixed popula-
tions. Concerning other types of “omics” data; the
statistical package “varclust” [40] allows for identification
of groups of highly correlated transcriptomics or/and
metabolomics data. It can be used to identify genetic
pathways related to the disease as well as for identifica-
tion of a small number of principal components repre-
senting a given group of variables, which in turn can be
used for building the predictive models. A new method
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“PESEL” [41] was proposed for selection of the number
of relevant principal components. All these methods
have been implemented in public available R packages.
Subsequently, a procedure for identifying the patients

responsive to the treatment was proposed. It should be
noted, that stratification can be implemented in the design
phase, via inclusion criteria definition or as element of the
randomisation process as well as in the analysis model.
And of course, stratification could be a useful technique
to increase the power of a trial in every setting.
In summary, we developed new methods for identifying

biomarkers and prognostic scores based on high dimen-
sional genetic data in small population group trials.
These developments lead to the following recommendations:

Recommendation 11. It is recommended to use
“varclust” for clustering of gene expression or
metabolomics data and extraction of a small
number of potential predictors of patients’ response
to the treatment based on highly dimensional
“omics” [40]. Also, it is recommended to use PESEL
for estimation of the number of important principal
components [41].

Recommendation 12. It is recommended to use both
regular and group SLOPE for identification of
biomarkers based on the genotype data, since
regular SLOPE has a higher power of detection of
additive gene effects, while group SLOPE allows for
identification of rare recessive variants [37].

Recommendation 13. It is recommended to use the
modified Bayesian Information Criterion for
efficient aggregation of genotype and ancestry of
genetic markers and identifying biomarkers in
admixed populations [39].

Choice of endpoint - biomarkers
Definition of a suitable endpoint to measure or assess
the benefit of a new treatment is a central point in
clinical-trial design. The importance of the definition of
suitable endpoints in rare disease clinical trials is already
mentioned in the CHMP guideline and further discussed
by the IRDiRC report on Patient-Centred Outcome
Measures 2016 [42]. In particular, in rare diseases, there
is a need for quickly accessible endpoints, for instance in
cases when the limited patient population size makes it
infeasible to use, for example, dichotomous therapeutic
outcomes as the primary variable in confirmatory trials.
Thus an efficient and feasible framework to evaluate bio-
markers and surrogate endpoints in small population
group clinical trials was needed. This development in-
cludes various aspects like handling of missing-data, de-
sign aspects like randomisation methodology, optimal
design, adaptive designs, decision theory, hierarchical-

data models, cross-over trials as well as incorporating
genetic markers and dose response information.
We showed that for small-populations groups, a causal

inference framework is especially useful [43–45].
Further, to account for missing data, the use of pseudo-
likelihood and inverse probability weighting methods are
shown to be advantageous over commonly used full
pseudo-likelihood methods while validation of surrogate
endpoints [46, 47]. Efficient and stable estimation strat-
egies for the validation model which of course could
be non-linear as well are developed [48]. Another as-
pect which is important in drug discovery is the use
of high-dimensional biomarkers [49]. Further dose-
response information is extremely valuable in the
context of markers in general and surrogate endpoints
in particular [50].
When surrogate markers are evaluated, the use of

multiple units (centres, trials, etc.) is needed, no matter
which paradigm is used. It is well-known that full likeli-
hood estimation is usually prohibitive in such complex
hierarchical settings, in particular when trials are of
unequal (and small) sizes. This phenomenon has been
examined by [51]. Based on this we propose solutions
for simple but generic longitudinal settings with units of
unequal size; these solutions are based on weighting
methods.
In summary, we developed a methodology for evaluat-

ing potential surrogate markers and to analyse data from
a small numbers of small trials, with emphasis on fast
and easy computational strategies.
This leads to the following recommendations in the

context of evaluation of biomarkers or surrogate end-
points in small population clinical trials:

Recommendation 14. In case of small trials, which are
in particular variable in size, we recommend the use
of the causal inference framework, combined with
efficient computational methods [43–45].

Recommendation 15. In case of the evaluation of
surrogate endpoints in small trials subject to
missingness, we recommend the use of pseudo-
likelihood estimation with proper inverse probability
weighted and doubly robust corrections [46, 52].

Recommendation 16. In case of hierarchical and otherwise
complex designs, we recommend using principled, yet
fast and stable, two-stage approaches [51].

Recommendation 17. In case of genetic and otherwise
high-dimensional markers, we recommend the use
the methodology expressly developed for this
context, in conjunction with the software tools
made available (R package IntegratedJM) [49, 50].

Recommendation 18. In case of a surrogate with
dose-response or otherwise multivariate
information present, we recommend to use the
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Quantitative Structure Transcription Assay
Relationship framework results. [50].

Recommendation 19. In case of the evaluation of
surrogate endpoints in small studies, we
recommend using weighting-based methods,
because the methodology has been shown to work
well theoretically, because it has been implemented
in user-friendly SAS and R software, and because its
practical performance is fast and stable [48, 49, 51]

Among other aspects to validate a clinical endpoint
reliability, i.e. the correlation between repeated measure-
ments that are taken within the same subject is of major
interest [42]. For example, the same outcome may be
measured repeatedly over time in the same patients. In
practical settings, the estimation of reliability become
more complex by the design under investigation. We
propose a general and flexible modelling approach to
estimate reliability, as well as the standard errors, and
confidence intervals [53].

Methodological considerations - randomisation
An important design technique used in comparative
clinical trials is randomisation, i.e. the treatment alloca-
tion by an element of chance. This technique is applied
in almost all confirmatory clinical trials, where two and
more treatments are compared to each other. Here the
element of chance in the allocation process is used to
avoid or at least minimize the influence of bias on the
estimate of the treatment difference. The properties of
randomisation procedures are well understood from the
theoretical point of view, but little work has been done
with respect to practical situations. For instance, apart
from response adaptive randomisation procedures, the
direct impact of randomisation on the endpoints is
under-investigated. Further, most of the evaluations be-
long to the long run argument, which is hardly applic-
able in small clinical trials. On the other hand, the
choice of the randomisation procedure for a particular
clinical trial is generally up to the scientist “feeling” and
frequently not well motivated by scientific arguments.
We showed that false decisions for a treatment effect
can be caused by failure to select the best practice ran-
domisation procedure. To assess the value of randomisa-
tion procedures for designing small clinical trials, a
completely new methodology had to be developed.
IDeAl implements rigorously the relation of the random-
isation process to the endpoint. The model for selection
bias as well as time trend bias can be interpreted as co-
variance imbalance and thus has strong relation to
stratification.
In various papers we developed a mathematical model

to describe the impact of selection bias on the type-I-
error probability for two- [54] and multi-arm [55]

parallel group designs with continuous normal endpoint
as well as for time-to-event endpoints [56]. We showed
that the impact is more heterogeneous in smaller trials
than in larger trials.
We investigated the impact of time trend of different

forms [57] and included this in the models above. We
developed a linked assessment criterion, based on a nor-
malized multi-criterion function [58] to be able to inves-
tigate various purposes. All these derivations are
included in our proposed evaluation of randomisation
procedures to clinical trial design optimization (ERDO)
framework, which will lead to more rational randomized
patient allocation procedures, giving trial results that are
more robust to selection bias and to inflation of the con-
ditional type-I-error rate [59]. ERDO should be used as
part of the clinical trial planning. The framework makes
use of our R package randomizeR [60]. We reached to
the conclusion, that no randomisation procedure pro-
tects against all types of bias in every clinical situation,
however some perform better than others. Consequently,
we advocated for a bias-corrected hypothesis test. We
developed an asymptotic likelihood ratio test to analyse
randomized clinical trials that may be subject to selec-
tion bias for normally distributed responses [61]. Other
options are inclusion of the block factor when only time
trend affects the data [57] as well as modelling [55].
These analyses should be part of the sensitivity analysis
of a clinical trial to assess the level of evidence.
To sum up, we developed a new methodology for the

selection of the best practice randomisation procedure
and subsequent analysis for a small population clinical
trial taking possible bias into account.
This leads to the following three recommendations:

Recommendation 20. Do not select a randomisation
procedure by arbitrary arguments, use scientific
arguments based on the impact of randomisation
on the study endpoint taking into account the
expected magnitude of bias [54–57].

Recommendation 21. Tailor the randomisation
procedure used in small-population randomized
clinical trial by following ERDO using randomizeR
[59, 60].

Recommendation 22. In case of a randomized clinical
trial, we recommend to conduct a sensitivity
analysis to examine the impact of bias on the
type-I-error probability [55, 59–62].

It should be noted, that the findings about the validity
of randomisation should be applied to every clinical trial
design used in small population clinical trials, see below.
The consequence is a better understanding about the
evidence, which could be expected or is derived from a
clinical trial. Currently the ERDO is applied to several
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studies, for instance the NICOFA trial to study Nicotina-
mide for the treatment of Friedreich ataxia with princi-
pal investigator Jörg Schulz (Chair of Department of
Neurology, University Clinic Aachen, http://www.erare.
eu/all-funded-projects).

Methodological considerations - adaptive design
Adaptive design techniques have been widely discussed
over the last decades [63, 64] and in particular appear in
the context of small population clinical trials very prom-
ising [65]. IDeAl used adaptive design techniques in con-
nection with extrapolation as well as optimal design
techniques, see above.
The use of external information in designing and ana-

lyzing clinical trial data has attracted much interest and
it is supposed that this fasten the validation process of
new therapies. There are several areas, which might be
promising here. For instance, the use of historical data
to substitute parts of a randomized trial, the extrapola-
tion of knowledge from one disease population to an-
other as well as the acceptance of already derived
knowledge from single arm trials so that further trials
are not necessary. IDeAl considers the problem of using
rigorously the data from a single arm study, using the
data from a previous trial to adapt the trial in a small
population and extrapolation of a dose response curve.
Another way to incorporate external information in

the design and/or the analysis of a clinical trial is intro-
duced by Hlavin [66]. The method used the strength of
the current knowledge in a large population or for in-
stance in adults to modify the significance level of the
clinical trial in the small population, i.e. children. Of
course, by this the sample size in the trial in the smaller
population can be decreased. The approach makes use
of Bayesian arguments to formulate a scepticism factor
which reflects the confidence in the actual knowledge.
This approach seems promising in pediatric trials to im-
plement an adaptive pediatric investigation plan [5].
Of course, a point to consider when using external in-

formation is related to sharing clinical-trial data at pa-
tient level. Not only the data protection problem should
be taken into account, but also the statistical problem
related to post-hoc analysis. Expertise in biostatistics is
needed to assess the interpretation of such multiple ana-
lyses, for example, in the context of regulatory decision-
making by application of optimizing procedural guidance
and sophisticated analysis methods [67].
In the ICH E10 guideline [68], it is mentioned that it

may be tempting in exceptional cases to initiate an ex-
ternally controlled trial, hoping for a convincingly dra-
matic effect, with a prompt switch to randomized trials
if this does not materialize. This leads to the idea of the
new framework, i.e. “threshold-crossing”, which lever-
ages the wealth of information that is becoming available

from completed RCTs and from real world data sources
[69]. The main idea is to formulate a threshold to be ap-
plied in a single arm trial, which serves as a decision rule
for the need of a randomized trial.
Testing for multiple objectives in clinical trials is pref-

erable, while supposed to reduce the number of clinical
trials and thus affects all clinical trials. However, if the
type I error probability is not considered accordingly, a
conflict with the validity of the statistical analysis arises.
The problem becomes more challenging with combining
multiple objectives with adaptive design techniques. We
developed adaptive graph-based multiple testing proce-
dures to allow testing of multiple objectives and designs
adaptations in a confirmatory clinical trial [70]. The
methodology is applicable in a wide range of scenarios in-
cluding trials with multiple treatment comparisons, end-
points or subgroups, or combinations thereof. If, in the
interim analysis, it is decided to continue the trial as
planned, the adaptive test reduces to the originally planned
multiple testing procedure. Only if adaptations are actually
implemented, an adjusted test needs to be applied.
We considered Phase IIb dose finding studies. To plan

and analyse these studies the European Medicines
Agency has qualified the MCP-Mod approach. Originally
MCP-Mod was developed for Phase IIb dose finding
studies to characterize the dose response relationship
under model uncertainty once a significant dose re-
sponse signal has been established. We developed a new
closed MCP-Mod methodology for confirmatory clinical
trials to allow individuals claims that a drug has a posi-
tive effect for a specific dose and applied the closed
MCP-Mod methodology to adaptive two-stage designs
by using an adaptive combination tests.
In a recent review conducted by the European Med-

icines Agency [71] it was shown that most of the
adaptive design proposals were in oncology. Unfortu-
nately, the important case of time-to-event endpoints
is not easily handled by the standard adaptive theory.
We proposed an alternative frequentist adaptive test
which allows adaptations using all interim data [72].
We showed that other standard adaptive methods
may ignore a substantial subset of the observed event
times. Further, we developed a group sequential per-
mutation test for situations where the underlying cen-
soring mechanism would be different between the
treatment groups [73].
To summarize at this point, we developed statistical

methods to adapt the significance level and allow con-
firmatory decision-making in clinical trials with vulner-
able, small populations.

Recommendation 23. In the case of confirmatory testing,
we recommend adapting the significance level by
incorporating other information, e.g. using information
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from drug development programs in adults for
designing and analyzing pediatric trials [66].

Recommendation 24. Where randomized control
clinical trials are infeasible, we propose “threshold-
crossing” designs within an adaptive development
program as a way forward to enable comparison
between different treatment options [69].

Recommendation 25. In the case of design
modification during the conduct of a confirmatory
clinical trial, we recommend using adaptive
methods to ensure that the type-I-error is suffi-
ciently controlled not to endanger confirmatory
conclusions. Especially in clinical trial with multiple
objectives special care has to be taken to address
several sources of multiplicity [70].

Methodological considerations -
pharmacogenetics
IDeAl investigated various special designs. For instance,
statistical design considerations in first in human stud-
ies, which usually are supposed to be of small size, and
are necessary in all drug development programs were
discussed in [74]. The six key issues highlighted in the
paper are dose determination, availability of pharmacoki-
netic results, dosing interval, stopping rules, appraisal by
safety committee, and clear algorithm required if com-
bining approvals for single and multiple ascending dose
studies.
We developed approaches to planning and analyzing

trials for identifying individual response to treatment
effects in small populations from various perspectives.
Crossover designs, as an extension of N-of-1 trials, can

be used to evaluate between and within subject variabil-
ity. This is particularly of interest in personalized medi-
cine where a repeated crossover design is suitable for
identifying variability arising between treatments and
from interaction between individual patients and their
treatment [35]. However, the lack of standards for
reporting clinical trials using a crossover layout is men-
tioned in particular for evaluation of analgesic treatment
for chronic pain [75].
The N-of-1 trial design is of special interest for IDeAl,

in particular because such designs may be particularly
suited to proof of concept studies. More generally, the
research design should reflect a specific research ques-
tion. For example, if the intention is to determine effi-
cacy of a treatment for a single patient, the N-of-1 trial
design is recommended in chronic diseases [75]. How-
ever, such trials can also be extremely efficient and thus
N-of-1 trials can be particularly useful in small popula-
tions [1]. Two purposes of the analysis of an N-of-1 trial
are establishing whether a treatment works at all and es-
tablishing to what extent the effect varies from patient
to patient. Here the evaluation of the within patient

variability becomes of major interest. Of course, the lat-
ter can only be answered if a series of N-of-1 trials is
available. We demonstrated that the appropriate analysis
employed could vary radically according to the ques-
tioned it was desired to answer [76].
When designing an N-of-1 trial, an important question

concerns the samples size. When concentrated on ad-
dressing the challenge of N-of-1 trials, there are many
components of variation involved, which make sample
size determination complex. We developed methods
reflecting these challenges and also the different ques-
tions that may be addressed [77].
An important aspect in the analysis of clinical trials

with small population groups is the explanation of the
sources of variation. For example, for longitudinal trials
both within- and between-patient variation have to be
considered as a minimum. If treatments are varied
within the same patient other sources of variation have
to be included. This shows that the trial design is a key
element in the discussion of various sources of variation
in observed response in clinical trials. It is suggested that
reducing variation in medical practice might make as big
a contribution to improving health outcome as personal-
izing its delivery according to the patient. It is concluded
that the common belief that there is a strong personal
element in response to treatment is not based on sound
statistical evidence.
In rare diseases, it is even more important and promis-

ing than in larger trials to extract as much information
as possible from between-patient trials. This has been
addressed trough a number of ways, e.g. making efficient
use of covariates. We explored machine learning tech-
niques, where the number of values of a response vari-
able can be very high and reducing the values by
clustering improves performance. The aim is to formu-
late a prediction model, i.e. select appropriate covariates.
We developed an algorithm that simultaneously groups
the values of a response variable into a limited number
of clusters and selects stepwise the best covariates that
discriminate this clustering [78]. However, care has to be
taken to the selection of the covariates.
In summary, we developed approaches to planning

and analyzing trials for identifying individual re-
sponse and examining treatment effects in small
populations.

Recommendation 26. For the analysis of N-of-1 trials,
we recommend using an approach that is a modified
fixed-effects meta-analysis for the case where
establishing that the treatment works is the objective,
and an approach through mixed models if variation
in response to treatment is to be studied [76].

Recommendation 27. When conducting a series of N-
of-1 trials we recommend paying close attention to

Hilgers et al. Orphanet Journal of Rare Diseases  (2018) 13:77 Page 9 of 17



the purpose of the study and calculating the sample
size accordingly using the approach provided in
detail in Senn [77].

Recommendation 28. We recommend that response
should not be defined using arbitrary and naïve
dichotomies but that it should be analysed
carefully paying due attention to components of
variance and where possible using designs to
identify them [79].

Recommendation 29. When analyzing between-patient
studies, we recommend avoiding information-
destroying transformations (such as dichotomies)
and exploiting the explanatory power of covariates,
which may be identified from ancillary studies and
patient databases.

Extrapolation
As stated in the CHMP guidance [1] it is recommended
to use as much information as possible to improve the
design. IDeAl follows this advice extensively, and as one
first aspect investigated options and methods for
extrapolation.
In this context regression models are a very import-

ant tool to provide dose-response information. In
many cases the question occurs whether two dose re-
sponse curves can be assumed to be identical. This
problem also appears in the situation of detecting
non-inferiority and/or equivalence of different treat-
ments [80].
We derived new statistical procedures addressing

the problem of comparing curves and extrapolating
information, with a particular focus on trials with
small sample sizes.
We improved the previous standard, less powerful

methodology for comparing two such curves [81], and
showed that the efficiency can be considerably in-
creased using a bootstrap approach. Additionally, we
developed a new statistical test for the hypothesis of
similarity of dose response curves. The test decides
for equivalence of the curves if an estimate of a dis-
tance is smaller than a given threshold, which is ob-
tained by a (non-standard) constrained parametric
bootstrap procedure [47]. A corresponding R package
“TestingSimilarity” was developed [82].
Further the Minimum Effective Dose (MED) metric

[83] was used to measure for similarity of dose-
response by claim for equivalence (to a certain
amount) of information from the source and the tar-
get population. Confidence intervals and statistical
tests were developed for this metric [84]. We further
could show the very robust performance of all derived
methodologies [85]. Finally, optimal designs for the
comparison of curves have been developed, which

minimizes the maximum width of the confidence
band for the difference between two regression func-
tions. In particular, it was demonstrated that the ap-
plication of optimal designs instead of commonly
used designs yields a reduction of the width of the
confidence band by more than 50% [86, 87].
In summary, we developed a new optimized design and

analysis strategy for comparing dose-response profiles to
extrapolate clinical trial results from a larger to a
smaller population.

Recommendation 30. The comparison of dose response
curves should be done by the bootstrap approach
[47, 87].

Recommendation 31. If the aim of the study is the
extrapolation of efficacy and safety information, we
recommend considering and comparing the MEDs
of two given populations [84].

Recommendation 32. The derived methodology shows a
very robust performance and can be used also in cases
where no precise information about the functional
form of the regression curves is available [88].

Recommendation 33. In case of planning a dose-
finding study comparing two populations, we
recommend to use optimal designs in order to
achieve substantially more precise results [86, 87].

As a perspective, it should be noted, that the ex-
trapolation can be combined with the surrogate end-
point findings. For instance, if the dose-response
curve is established in adults following a true end-
point, and there is already a validated surrogate end-
point in a pediatric population available, then the
latter can be used to show similarity of the dose-
response curves.

Software
In the preceding sections we discussed various aspects
to improve the design and analysis of small population
clinical trials ending up the 33 recommendation. How-
ever, software packages are necessary to implement these
recommendations. Various software packages have been
delivered, to facilitate the application of our findings.
The lists can be found as supplementary material in
Table 1. More information can be found on the website
(https://www.ideal.rwth-aachen.de/).

IDeAl-net
We derived 33 recommendations from IDeAl’s more
than 60 published scientific papers to date in peer-
reviewed journals, to improve the design and analysis of
small population clinical trials. The results belong to
general aspects of clinical trial design and analysis
methods as well as to more specific areas. General
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techniques include methodologies at a drug develop-
ment level like decision theoretic evaluation as well as at
the trial design level like choice of a randomisation pro-
cedure, establishing surrogate endpoints, development of
prognostic factors, pharmacometric evaluation of design
aspects, adaptive graph-based multiple testing proce-
dures. Special techniques address for instance dose

response trials with respect to extrapolation, designs for
longitudinal data. Of course, application of these recom-
mendations depends on the practical situation, e.g. the
disease under investigation etc. The importance of ad-
vanced statistical modelling becomes clearer with the ap-
plication in the rare disease context. For instance, mixed
effects models, whether linear or non-linear constitute im-
portant statistical methodology, not only for evaluation of
surrogate endpoints, for analysis of pharmacological con-
siderations, but also for the analysis of subject by treat-
ment interaction as in personalized medicine [88].
Further, the definition of an endpoint as slope over time is
another area of successful application of linear mixed-
effects models which reduces the sample size [89].
Some researcher might prefer to think in terms of spe-

cial topics representing methodological skills necessary
to design small population clinical trials and would like
to mirror IDeAl’s work on these topics. A sound list of
topics, which are currently discussed in the area of im-
provement of the statistical design and analysis method-
ology for small population clinical trials is summarized
in the IRDiRC task force report [65]. We extracted a list
of 73 items (see supplementary material for a complete
list in Table 2) related to statistical design and analysis
methods from this report. To relate the work package
output to these IRDiRC task force report items we con-
ducted a “text mining” search in the 65 IDeAl publica-
tions. 12 topics are not addressed by IDeAl’s work. This
result is illustrated as network graph expressing the
topics reflected by IDeAl’s research (see Fig. 1: The
IDeAl-net-1).
On the other hand, IDeAl’s findings make use of

specific statistical skills and introduce new methods
beyond the IRDiRC task force report. To design and
analyse a small population groups trial “IDeAl-ly” the
terms included in the IDeAl-net-2 should be taken
into account. Again IDeAl-net-2 is based on the 65
IDeAl publications relating the work package output
to terms newly coined terms (see Fig. 2: The IDeAl-
net-2 supplementary material for a complete list in
Table 3). The graphs not only illustrate how the
topics are related to the work package tasks but also
how the topics are related to each other. This shows
that design aspects are related at various levels as
pointed out in the IRDiRC task for report [3, 68]. In-
spired by the unidirectional graph presented by Cornu
et al. [90] we developed a more complex graphical
representation of design and analysis methods neces-
sary to tailor small population clinical trials.

Discussion
As described in the previous chapters, IDeAl has con-
tributed to the most important areas of statistical de-
sign and analysis of small population clinical trials

Table 1 List of IDeAl Statistical Software

1. Araujo, A. (2016): R-Code “Statistical Analysis of Series of N-of-1
Trials Using R”, http://www.ideal.rwth-aachen.de/wp-content/uploads/
2014/02/nof1_rand_cycles_v8.pdf

2. Brzyski, D. Peterson, C., Candes, E.J., Bogdan, M., Sabatti, C., Sobczyk, P.
(2016): R package “geneSLOPE” for genome-wide association
studies with SLOPE. https://cran.r-project.org/web/packages/geneSLOPE/
index.html

3. Graf, A., Bauer, P., Glimm, E., König, F. (2014): R-Code to calculate worst case
type I error inflation in multiarmed clinical trials, http://onlinelibrary.wiley.com/
doi/10.1002/bimj.201300153/suppinfo

4. Jobjörnsson, S. (2015): R package “bdpopt” for optimization of
Bayesian Decision Problems. https://cran.r-project.org/web/packages/
bdpopt/index.html

5. Hlavin, G. (2016): application for extrapolation to adjust
significance level based on prior information, http://www.ideal-
apps.rwth-aachen.de:3838/Extrapolation/

6. Möllenhoff,K. (2015): R package “TestingSimilarity” for testing
similarity of dose response curves. https://cran.r-project.org/web/
packages/TestingSimilarity/

7. Riviere, M.K., Mentré, F. (2015): R package “MIXFIM” for the evaluation and
optimization of the Fisher Information Matrix in Non-Linear Mixed Effect
Models using Markov Chains Monte Carlo for both discrete and
continuous data. https://cran.r-project.org/web/packages/MIXFIM/

8. Schindler, D., Uschner, D., Manolov, M, Pham, M., Hilgers, R.-D.,
Heussen, N. (2016): R package “randomizR” on Randomization for
clinical trials. https://cran.r-project.org/web/packages/randomizeR/

9. Senn, S, (2014): R, GenStat and SAS Code for Sample Size
Considerations in N-of-1 trials, http://www.ideal.rwth-aachen.de/wp-
content/uploads/2014/02/Sample-Size-Considerations-for-N-of-1-
trials.zip

10. Sobczyk, P., Josse, J., Bogdan, M. (2015): R package “varclust” for
dimensionality reduction via variables clustering. https://
psobczyk.shinyapps.io/varclust_online/

11. Sobczyk, P., Josse, J., Bogdan, M. (2017): R package “pesel”
Automatic estimation of number of principal components in PCA
with PEnalized SEmi-integrated Likelihood (PESEL). https://github.-
com/psobczyk/pesel

12. Szulc, P., Frommlet, F., Tang, H., Bogdan, M. (2017): R application for
joint genotype and admixture mapping in admixed
populations, http://www.math.uni.wroc.pl/~mbogdan/admixtures/

13. Van der Elst, W., Alonso, A., Molenberghs, G. (2017): R package
“EffectTreat” on the Prediction of Therapeutic Success. https://cran.r-
project.org/web/packages/EffectTreat/index.html

14. Van der Elst, W., Meyvisch, P., Alonso, A., Ensor, H.M., Weir, C.J.,
Molenberghs, G. (2017): R Package “Surrogate” for evaluation of
surrogate endpoints in clinical trials. https://cran.r-project.org/web/
packages/Surrogate/

15. Van der Elst, W., Molenberghs, G., Hilgers, R.-D., Heussen, N. (2016):
R package “CorrMixed” for the estimation of within subject
correlations based on linear mixed effects models. https://cran.r-
project.org/web/packages/CorrMixed/index.html
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with a significant number of new results. This already
refines the actual methodologies. However, it is shown
that major progress is being made, which not only
improves the standard methods dramatically [3, 91].
Some of the findings, like the adaptive extrapolation
with refining the significance level, the recommenda-
tion about the selection of a randomisation procedure
as well as the decision analytical approach necessitate
rethinking, flexibility of stakeholders and thus braking
barriers is necessary.
To give research a direction how to use the recom-

mendations, we refer to Fig. 3. From the point of
view to plan a clinical trial, some recommendations
belong to generating information form existing data
while other belong to the integrated design and

Table 2 List of IRDiRC task force report design and analysis
topics and synonyms (topics in italics are not addressed in
IDeAl’s publications)

adaptive design; adaptive/flexible design/study/trial

adaptive randomisation

adaptive selection

allocation ratio

ANCOVA

Bayesian method; method/analysis/design

benefit-risk

bias

biomarker; bio/genetic

clinical endpoint; endpoint/outcome

composite endpoint; endpoint/outcome/measure/response measure

cross-over

decision analysis, analysis/theory/making/process

disease mechanism

disease model

double-blind

drop-out

drug-disease model; model/modelling

early escape design

enhanced trial design

epidemiological study

extrapolation

factorial-design

group-sequential

high-risk allocation design

historic data

in-silico model; model/modelling/clinical trial

interim analyses

level-of-evidence

longitudinal data; longitudinal/repeated measures, model/data/outcome

micro-dose trial; trial/study

missing data; midding data/missingness

multi-arm design; multi arm/multiple treatment arm, design/study

multicenter

multiple endpoint; endpoint/outcome

multiple testing; multiple testing/multiple hypotheses testing

natural history

n-of-1; n-of-1/single-subject design

non-clinical data

non-randomised

parallel group

patient preference trial

patiet-centerdness, centerdness/centered

Table 2 List of IRDiRC task force report design and analysis
topics and synonyms (topics in italics are not addressed in
IDeAl’s publications) (Continued)

PCOM; patient-centered outcome measures

PD model; PD/pharmacodynamic

PIP; paediatric investigation plan

PK model; PK/pharmacokinetic

platform design; design/trial

post marketing

post-hoc

power

pragmatic trial; trial/study

prior data; data/distribution, informative Bayesian prior distribution

prognostic model; model/factor

public health strategy

randomisation procedure

randomised withdrawal

RCT; randomised controlled trial/study/design

registry

regulatory decision; decision/strategy

re-randomisation

response-adaptive method; method/design

sample size

sample size re-assessment; reassessment/re-estimation

seamless adaptive design

single-arm

SMART design; SMART/snSMART

subgroup; group/population

sufficient evidence

surrogate endpoint; endpoint/outcome/marker

time-to-event; survival endpoint/outcome/trial/study

trial simulation

validity
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analysis perspective. The overaching assessment about
the value of a research program making use of deci-
sion theoretic is addressed as well.
Of course, this is only a report after 3 year of de-

velopments. Further research is already started going
far beyond the initial IDeAl research plans and will
add new aspects. Some of these further results have
already been summarized in scientific publications
that are under review. Some other work is still in
progress with papers under preparation. These as-
pects are not mentioned in the paper here. However,
the IDeAl consortium feel that the actual description

included in the paper is worth to report in the light
of an expected review of the CHMP guidance on
small population clinical trials next year. Here this
report is already helpful to define one side of a new
standard. Of course, the forthcoming results of
asterix and InSPiRe, are the other side and are an
excellent basis for new arguments as well as the re-
sults from the before mentioned projects under in-
vestigation. Some of the developed procedures have
the potential to become a certified procedure [92].
IDeAl already shows the relation to other research

areas that might seem far away from small population

adaptive design

adaptive randomisation

adaptive selection

allocation ratio

ANCOVA

Bayesian method

benefit-risk

bias

biomarker

clinical endpoint

composite endpoint

cross-over

decision analysis

disease model

double-blind

drop-out

early escape design

epidemiological study

extrapolation

factorial-design

group-sequential

historic data

in-silico model

interim analyses
level-of-evidence

longitudinal data

missing data

multi-arm design

multicenter

multiple endpoint

multiple testing

natural history

n-of-1

non-randomised

parallel group

patient-centredness

PD model

PIP

PK model

platform designpost marketing

post-hoc
power

pragmatic trial
prior data

randomisation procedure

randomised withdrawalRCT
registry

regulatory decision

response-adaptive method

sample size

sample size re-assessment

seamless adaptive designsingle-arm

subgroupsufficient evidence

surrogate endpoint

time-to-event

trial simulationvalidity

WP2

WP3

WP4
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WP6

WP7

WP8WP9

WP10

Fig. 1 IDeAl-net-1 relating IRDiRC task force report design and analysis topics to IDeAl’s work package output

adaptive combination

adaptive graph-based multipleadaptive LASSO

adaptive strategy

adjusted significance level

assessment of randomisation procedures

Bayesian decision theory

biased corrected test

biasing policy

BIC criterion

blocked ANOVA

bootstrap

causal inference

confidence bands for difference of curves

CorrMixed

decision theoretic aspect

dOFV

dose-response

EffectTreat

ERDO

FDR

first-in-human

Fisher information matrix

intersection-union principle
k-means

linked assessment criterion

many-to-one

maximum likelihood estimation

MC-AGQ

MC-HMC MCPMod
meta-analysis

meta-analytic paradigma
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Fig. 2 IDeAl-net-2 relating a list of statistical techniques relating to IDeAl’s work package outputs
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groups. The bridge between big data and small-
population clinical trials was built up resulting in recom-
mendations for an European Union action plan in [93].
A total of 33 recommendations developed and related

to the work packages are given. The route to thinking
about improvements is displayed in an IDeAl-network,
which is grounded on IRDiRC topics which are dis-
cussed in the context of small population clinical trials.
This shows in particular, that unfortunately, there is
no “one size fits all” solution and as a result of IDeAl
research, one may conclude that tailored approaches
are necessary for statistically designing and analyzing
small population group trials. Here experts are neces-
sary to train different stakeholders. Teams, perhaps
including more than one biostatistician should be
formed to answer specific questions.

Conclusion
To date, IDeAl has brought major progress to the de-
signs and analysis of small population clinical trials.
Some of the findings concern all areas of clinical trials
while other address specific research questions. With
this, evidence can be derived in small population clinical
trials. The methods can be used in a wide range of small

Table 3 List of IDeAl added aspects, explanation in brackets

adaptive combination

adaptive graph-based multiple

adaptive LASSO

adaptive strategy

adjusted significance level

assessment of randomisation procedures

Bayesian decision theory

biased corrected test (likelihood ratio test)

biasing policy

BIC criterion

blocked ANOVA

bootstrap (constrained parametric bootstrap procedure)

causal inference

CorrMixed

decision theoretic aspect (Bayesian decision theoretic)

dOFV (delta objective function values)

dose-response

EffectTreat

ERDO (evaluation of randomisation procedures for design optimisation)

similarity of dose response

FDR (false discovery rate)

first-in-human

Fisher information matrix

SLOPE (group SLOPE, geneSLOPE)

k-means

linked assessment criterion

many-to-one

maximum likelihood estimation

MC-AGQ

MC-HMC

MCPMod (closed MCPMod)

confidence bands for difference of curves

meta-analysis

meta-analytic paradigma

mixed effects model

MIXFIM

model averaging

model selection

monte-carlo

stochastic simulation

non-parametric

open-label

optimal-design (compound D-optimality criterion)

parametric power estimation

permutation test

Table 3 List of IDeAl added aspects, explanation in brackets
(Continued)

PESEL (penalized semi-integrated likelihood method)

pharmacometrics

prior information

randomisation based inference

randomizeR

real world data

Robustness

SIR (sampling importance resampling)

scepticism factor (scepticism)

selection bias

sequential analysis

Simulation

SPF (surrogate predictive function)

stratification

personalised medicine

SURROGATE

TestingSimilarity

threshold-crossing

time trend bias

two-stage adaptive design

type-I-error probability

intersection-union principle
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population clinical scenarios. Rigor and thoughtful appli-
cation will offer opportunities in clinical scenarios where
trials are infeasible with the standard methods.
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